
these are the 3 Instruction we have designed and the code assigned is your 1, 2 and 5. Other

codes are now still available to me.

So, now we can design some more Instructions. So now, we are saying that already we have

designed

(Refer Slide Time: 36:41).

these 3 Instruction. Now, we are saying that we are designing one more Instruction call SUB

M. So, it means subtraction. So, what is this Instruction this is basically nothing but

Accumulator is equal to Accumulator minus contents of the Memory. Ok we are going to give

the Instruction format is same whatever we are going to design for all the Instruction it is going

to follow this particular pattern.

Ok So, now along with this 3, I am going to use one more code this is code 4 which your

subtraction code. Like that we can now add more and more Instruction now along with that

now again I am going to give designing 4 more Instruction. This is a similar Instruction load

199

store sub m, but my reference is different initially we are talking about the memories now we

are talking about the Registers.

(Refer Slide Time: 37:34)

So, now what will happen whatever operation we are having say here I am going to say that

this is again say load operation this is your 1 is your 0001, what is your 9, 1001; that means,

for load I am returning this particular 0001, but with the most significant bit 0 is going to say

that it is a Memory reference and 1 will indicate that it is a Register reference. So, when it is 9

then I can give the reference of the Memory. So, in that particular case generally already I have

mentioned that number of Registers is limited very less number Registers. So, if I am having

say only 8 Registers that we are going to use say 𝑅0, 𝑅1 to R7 say these are the Registers.

Then what will happen in that particular case we don’t require the 12 bits. So, these are

basically don’t care, but I can keep all those things is 0 and along with that here I am going to

give the Register number. So, if I say that this is your 9000 means it is going to refer to this

particular Register 𝑅0. The value of the Register 𝑅0 will be loaded to the Accumulator.

So, similarly if my opcode is your 9001 it is going to say that take the value of the Register 𝑅1

and bring it to the Accumulator. So, if you see the Organization, we are saying that we are

having some general purpose Register now we are having 𝑅0, 𝑅1 like that we are saying 8

different Register. So, contents of this Register can be taken out from this Register and put it

to the Accumulator with the help of this Instruction 9000. So, it is referring to the Register 0

and what is the opcode says take his information and bring it to this Accumulator.

So, like that we can have the effect of those particular Instruction. Now, if I am going to write

say this is your 5 is your 0101 and what is your this things when I am going to refer it this is

200

your 1101. Ok So, now if my Instruction is like that this is your opcode is your D and say it is

your 007. Now, what it basically does it is an addition of R.

So, this Instruction is basically nothing but Accumulator is equal to Accumulator + R7, we are

referring this particular Register 7 or R7 . So, the effect of this Instruction is like that. So,

similarly we can now interpret other also. So, we are having similar Instruction one is referring

to the Memory location and second one is referring to the Register.

Ok So, in this particular case you just see that how many different kind of combination we are

going to have? We are going to have only 8 different combination. Because, that Registers

values can go from 0 to 7 totally. So, for all those Instruction we are going to get 8 different

variation maybe load 𝑅0, load 𝑅1 like that.

But what will happen in this particular case when I am going to talk about LDA M. So, M is

going to take all the 12 bit address. So, this is your 2^twelve; that means, 4096 Memory space

so; that means, we are going to have 4096 variation of this particular LDA M. Because, we can

get or we can use any Memory location to take our information, but for LDA R we are going

to get 8 variation only because we are having 8 general purpose Register.

So, similarly LDA R, STA R, SUB R, ADD R now you just see that 4 + 4 we have designed 8

Instruction still we can design 8 more Instruction. Now, in that particular case

(Refer Slide Time: 41:41)

We are designing some more Instruction over here. So, this is INR is basically in increment

and DEC is your decrement. So, what will happen we are having one increment operation and

one decrement operation we can increment the value of my Register or Memory or we can

decrement the value of my Memory or Register.

So, in that particular case say if I am going to say 6900. So, in that particular case what will

happen 6 is my decrement. So, whatever value we have in the Memory location 900 say if this

201

is my Memory and in my Memory location 900 say we are having say 15 then what will happen

it will decrement of value of this particular Memory location and after execution we are going

to get 14.

Similarly, if I am going to have say B002 now what will happen it is basically nothing but we

are having the Register 𝑅2,the value of Register 𝑅2 is nothing but 𝑅2 - 1. So, this is the way

we can look into it now when we are using increment and decrement operation in processor

general we are not going to use the ALU for such type of Organization. Because, here we are

having some values in the Accumulator.

If I am going to use Accumulator for decrementing then we have to bring it from the Register

to the Accumulator. So, it will get disturbed that means, temporary we have to store the value

of Accumulator. So, instead of doing it what generally we used to do we are going to put special

circuit over here which is going to increment it or decrement it. One simple way we can think

about that how to implement it maybe we can use a counter which is an up down counter

because already we have discussed up down counter. So, we put the value once we going to

execute the increment Instruction what we are going to do we are going to count up and when

we are going to implement a decrement operation we are going to count down.

So that means, value of 𝑅1 will be placed to counter. So, basically what we are going to do,

when we are going to have this thing say decrement your 𝑅2 then what will happen we may

use a counter over here. So, value of 𝑅2 will be loaded over here then we are going to count

down operation then oh sorry B is your increment. So, we are going to count up. Then value of

counter will be incremented by one and going to store it back to Register 𝑅0.

So, like that now we say out of 16 we have now consumed 12 operations. Still 4 are remaining

left till now we have designed this particular 12 Instruction still 4 more code are remaining left

202

0, 8, 7 and F. So, that means we can design 4 more Instruction now just see what we are

designing.

(Refer Slide Time: 44:52)

Now, here I am saying that opcode 0 is your JMP. It is a jump Instruction. It is a halt Instruction;

that means, it is going to say that halting the program or stopping the program execution that

means at the end of the program we have to give this HLT Instructions just to say that now stop

execution need not fetch any more information.

Similarly 7 is given as your JZ and F is your JNZ. This is JZ is your jump on 0 and JNZ is your

jump on not 0 and this is JMP is your jump. So, these are the control Instruction we are defining

this jump is your unconditional jump without any condition we are going from one Memory

location to another Memory location, but jump Z and jump not Z and Z jump 0 and not 0 these

are conditional jump Instruction. It depends on some condition and we are going to jump to

some other Memory location. So, basically what will happen we are talking about the 0, now

how we are going to take a decision you know that we are having a Z flag which is basically

zero flag. Now when we are going to set this particular 0 flag? When the ALU operation is 0.

Ok now, you just see that in your high level language sometimes you write if a = 0 do something

otherwise do something else. So, if we are having such type of program. So, in Memory what

will happen we are storing our problem like that we have said this is the conditional Instruction

and this is one part and this is the other part.

So, I can say this is if part this is else part. In that particular case what will happen first we are

going to check this particular condition depending on the condition if it is true we are going to

execute this particular set of Instruction and if it is false then we are going to execute the other

set of Instruction. So it is making a say choice.

Now, how we are going to making a choice depending on the condition. So, such type of

condition can be implemented with the help of this conditional jump Instruction. So, one of the

203

things is we are talking about jump 0 so; that means, we are having this particular zero flag.

Zero flag will be set to one if the result of ALU operation is 0 result of ok. So, we perform an

ALU operation if the result of ALU operation is coming as 0 then it is going to take a decision

and it may take come to this particular Memory location ok. We have to specify the Memory

location along with Instruction. We know the format. Basically this is your opcode and this is

address.

So what will happen, here I am going to say that opcode is 7 and say address is 350. So, in that

particular case when I am going to execute this thing if this condition is true we are going to

jump to the Memory location 350 and say here it is a now we are in say 320. So, next Instruction

should be we need to fetch from 321. But when this condition satisfied then we are not fetching

it from 321, but we are going to fetching it from 350.

Similarly, that opcode 0 it is unconditional jump. So, whatever address we provide it will

simply go to that particular Memory location then how we are going to get it; that means, we

are going to load the program counter with this particular of value then only we will be knowing

that next Instruction you have to fetch from that particular Memory location and it is HLT it is

going to say that stop the execution of the program. So, we need not to fetch any more

information from the memory ok. Now you just see that we are having 16 different operation

with and we are assigning this particular 16 different operation to those particular code 16 code.

Now, when we fetch it then what will happen it will come to the 𝐼𝑅 and in 𝐼𝑅 this is the basically

code and this is the other 12 bits is different. These code what this 4 bit we are going to give it

to the control unit and according to the nature of this particular Instruction, now control unit

will generate the appropriate control signal and this will go to the appropriate component inside

204

the processor. So, this is the way we can see how we are going to execute this particular

program.

(Refer Slide Time: 50:00)

Now, you just see that taking a small example just is I am saying that I have to write a program

to calculate the total marks scored by a student in an examination having 6 subjects. So, say in

your semester you are having 6 subject you scored say marks in the 6 subject and finally, you

can get the add them together and find out what is the total marks that you have scored.

So, in some high level language you can write such type of program code what is that now we

are having we need some placeholder. So we are defining one 𝑡𝑚, this is going to say what is

the total mark initially this value is 0, 𝑛𝑠 number of subject now we are talking about the 6

subject and we are having marks of 6 different subject. So, we are saying 𝑚[6]. So, in high

level you know that we can define array.

So, we are defining arrays. So, we are having six elements ok 1, 2, 3, 4, 5, 6. So, here I am

having some marks like that 25, 97 something like that. So, this marks whenever defining arrays

so, this marks will be stored in our Memory in 6 consecutive Memory location.

Now, what we are doing now do what I am going to do 𝑡𝑚 = 𝑡𝑚 + 𝑚 ns. So, if this is 1, 2, 3, 4,

5, 6 location of this thing first I am going to add the contents these things to total marks. So,

total marks will become 0 plus something then we are decrementing 𝑛𝑠 by 1; 𝑛𝑠 - 1. So, now,

ns becomes 5. So, I am going to perform this particular operation while ns is greater than 0

after that I am going to check now it is 5 not it is still greater than 0.

So, we will go back and we add the next number, we will decrement it like that when it becomes

we come out from the loop and it will go to the next Instruction. So, I am getting after coming

205

out from this loop what we are getting we are adding all those numbers and the result is

available in the 𝑡𝑚, 𝑡𝑚= 𝑡𝑚+ this array element.

And this array will be stored in consecutive Memory location in my main Memory. Now this

is a high level language now when we are going to write a program. So, in low level

(Refer Slide Time: 52:17)

Or assembly level, I can say like that. So, this is basically related to this particular example.

Here we are saying what first I am writing load Accumulator M1.

So, basically what I am thinking say this is the Memory and we are having some Memory

location in this Memory location we are storing the number of subject then I am having say 6

marks in some consecutive Memory location ok, this is say 75, 67, 85, 92, 78, 89. So, this is

the number of subjects say here basically we are storing 6.

So, initially first I am bringing it this particular number 6 then store Accumulator 𝑅1. We are

storing this particular thing in Register 𝑅1. So, now in 𝑅1 what we are having 6 this is the

number of subject then load Accumulator Memory. So, I am now going to give the address of

this particular Memory location in this particular Instruction and we are getting this is now

what we are having this information is in Accumulator now. So, in Accumulator we are having

75.

Already we have taken care of the first number. So, we are decrementing 𝑅1 now value of 𝑅1

become now 5 because already have taken care one number then what you are doing ADD M

what ADD M will do it will take the contents of this particular Memory location 67 adding

with the Accumulator and store the result in a Accumulator. So, we have taken care of the

second number. So, we are decrementing 𝑅1.

So, now 𝑅1 will become 4 we will say sum not equal to 0 then go back to this particular

Memory location and fetch this operation. So, it will be in this particular loop till we are going

206

to exhaust this particular 6 number once it is over then say store Accumulator and I can say

that the result we are going to store in some Memory location and after getting the result in the

Memory location now we halt it. So, this is the way we are going to do it.

Now, this program cannot be written for the processor that we are discussing and for the

Instruction set we are having because here you just see that here I am talking about that add m

we are talking one Memory location when you go back in the next time we have to go to the

next Memory location, but here in this Instruction set we do not have any provision to

manipulate this particular address Memory. So, that’s why this program is cannot be executed

in this particular processor if we are going to write this particular program what will happen is

going to add this particular 75, 6 times because we do not have any provision to sense

manipulate this particular address M we do not have any Instruction.

So, address manipulation is not available in this particular Instruction set. So, if we are going

to execute this particular program in this particular processor we are going to add up 75 in 6

times. So, result will be your 75 into 6 because we do not have an Instruction to manipulate

this particular address M because if I am storing it in say 700 second one I have to take it from

701 then 702; that means, we need to increase this particular M after adding that particular

number.

But in my Instruction set I do not have any such provision whatever we are doing incrementing

and decrementing it is going to increment and decrement the contents of the Memory location

it is not going to manipulate the address. So, we need some more Instruction to manipulate the

address also. So, we will see in our subsequent lecture, but in this processor we cannot design

207

it because we are having 16 code and we have exhaust all the 16 code. So, we need more bits

to design more number of Instruction.

(Refer Slide Time: 56:20)

So, one simple program I can write for this particular machine. So, load Accumulator M1. So,

first number I am getting it in Memory location the way I am saying that 700 so; that means,

load it from this particular Memory location an M2 take the number from the second location

add it and store it in Memory location like that ADD M3, ADD M4, ADD M5, ADD M6 then

store the result in M7 and halt. So, we are going to write individual Instruction for each and

every number.

So, for 6 of this it is fine, but if I say that going to add thousand numbers then we cannot write

thousand Instructions somehow we have to use such type of loop only. So, for that we need

Instruction to manipulating address also now finally, I can say that now what we are saying

that this numbers we are storing in Memory location 701, 702 like that.

So, in assembly level we are writing it then in machine level we are going to have this particular

effect ok. So, now, you just see that we are talking about the assembly level, machine level and

like that we can have high level also. So, here I can write high level program the way I am

writing over here. So, this is a high level program. So, the same problems I can say this is the

assembly level and this is a machine level.

Now, when I am going to write a high level program now how I am going to execute it. So,

somehow I have to convert it to the machine level program. So, for that we are having a

software which is known as your compiler. So, compiler is there. So, we are going to compile

it and after compilation we are going to get such type of machine level code and this machine

level code will be executed in program.

So, if you are accustomed with your C program. So, if you have written any C program and

say if you are working with unix system or Linux system generally you use some compiler gcc

208

and like that. Say if you are writing a program called say abc.c then what will happen generally

you compile something like that gcc abc.c and it is going to give me a.out. So, this is the

executable file and this executable file is not having such type of machine level code only.

Now, we can execute this particular code. So, high level language can be converted to the

machine level code similarly we are having an assembler also we can write the code in the

assembly level and with the help of assembler we can convert it to the machine level code

finally, we need this particular machine level code to execute in the computer.

So, assembler is going to convert assembly code to the machine code and compiler is going to

convert the high level language to the machine code of a particular machine. Along with that

we are having another term which is known as your interpreter. So, again interpreter is used

for high level language. So, in case of compiler we are going to compile the whole program

and going to get an executable file and going to execute this particular file, but in case of

interpreter it is going to interpret the Instruction by Instruction and it is going to first interpret

the Instruction first then going to execute it then it will interpret the Instruction 2 and going to

execute it.

So, if I am writing a high level program it is going to interpret the Instruction by Instruction

and execute it one by one. Now finally, we are going to get this particular machine level code

now we have to executive it now one how we are going to execute it generally we give the

command like that a.out what will happen when I am giving the command a.out it will load

this particular program to main Memory.

(Refer Slide Time: 59:57)

So, you just see that we are loading this particular program say from main Memory location

150 to 157. So, we are loading it and Memory location; that means, in Memory location

hundred fifty I am having 1701, in 151 I am having 5702 like that 157 we are having eight

thousand 8000 the other bits are immaterial because it is the halt function. So, we are loading

209

it to the Memory location and when we load it to the Memory location then we are having the

program counter that program counter will be load with the value 150, because we must know

the address of an Instruction since this program is loaded from Memory location 150 to 157.

So, program counter will be loaded with this particular value 150 now we are going to fetch

the Instruction from 150 we will execute it, after execution of first Instruction next Instruction

we are going to fetch it from the 151 will execute it like that when we fetch the Instruction

from 157 we halt the program we stop the program execution; that means, we are not going to

210

fetch anymore Instruction from 158 memory location, it stops. So this is the way we are going

to execute our program in our computer.

(Refer Slide Time: 61:04)

(Refer Slide Time: 61:13)

Now say I feel that now we are having an idea how a program is executed in a computer whether

we are writing it in a high level language or assembly level language or machine level language.

So, now just I am giving some very simple test item here I am saying that first question is why

there are 3 levels of programming language? Now I am talking about the machine level,

assembly level and compiler. You just see if I am going to give it a processor and just saying

that you just program it then what will happen you have to write everything in machine level;

211

that means, you must remember the code of each and every Instruction which is not possible

always we have to take a reference.

But instead of remembering Instruction or numbers slightly it is easy to remember some code

like that add, subtract, multiply, load, store. So, for that what will happens we are giving a code

to each and every Instruction which is known as your mnemonic codes now once we have the

mnemonic codes now we can use this code to write a program.

So, if we write our program with the help of mnemonics code then we are going to say this is

the assembly level code, after writing in the assembly level code with the help of assembler we

are going to convert it to the machine code and that machine code will be executed, but again

remembering the assembly code on mnemonics is not that easy because now it is I am talking

about the 16 Instruction. But if I am going to design a processor where the size of the Instruction

is an 8 bit that opcode then I can design 256 different Instructions. So, remembering the

different Instruction mnemonics is difficult. So, for that we are coming up with the high level

language you write your program the way you think, but we have to follow the syntax of a

particular programming language.

So, when we are going to write C program we must follow the syntax of the C program, once

we write it then we can compile it to the machine level. So, this is the requirement of the high

level language because it is difficult to code in machine level, it is against slightly difficult to

code in assembly level also because we have to remember many more things. So, that’s why

you write in high level then convert it to the machine code.

Question 2 what is assembler and compiler and what is an interpreter. So, already I have

mentioned it what we use to do with assembler and compiler and what is an interpreter.

Question 3 why it is not possible to implement the loop with the given Instruction set of the

processor discussed in this lecture.

So, we are just saying that for a small processor Instruction is 4 bit, already I have explain why

we cannot implement the loop. So, for implementing the loop we have to have some Instruction

212

to manipulate the address given if we are going to take the information from our Memory. So,

this is required so that’s why here it is not possible.

(Refer Slide Time: 64:09)

Now, this unit is the last unit of this particular module fundamental of digital computers so that

means, we are coming to end of this particular module. So, in this particular module we have

divided this module into 6 unit. So, in first unit we are talking about model of computers and

working principle. So, we have discussed about the how we are going to model a computer and

how the computer works.

Unit 2 is about digital logic building blocks because we are going to construct a digital

computer. So, we are going to take help of many more digital building blocks. So, just we are

giving a brief ideas about those particular digital building blocks and we are going to use those

building blocks. So, we are not discussing anything about the design issues of those particular

digital building blocks in knowledge level we have discussed it.

Unit 3 basically we see information representation and number system ok. So, how to represent

numbers integer and real we have discussed, how to represent other information like that how

we are going to write your name, store your name in a computer all those things we have

discussed in unit 3.

Unit 4 is basic element of the processor. So, we have discussed about what are the basic

elements that we have in the processor in the top level then unit 5 we have discussed about

storage and I/O interfaces because processor works on von Neumann stored program principle

somehow we have to give the information to the processor. So, that’s why we have to interface

or connect storage unit and as well as I/O unit and unit 6 that last unit that today I have covered

213

we have discussed about how we are going to execute a program and what are the different

levels of programming languages.

(Refer Slide Time: 65:48)

Now so, what idea till now we have, this is a top level view of our computer. So, main element

is the processor it works on von Neumann stored program principle. So, we have the main

Memory then processor is going to work with the contents available to the main Memory, but

how we are going to bring the information to the main Memory for that we need input output

device that will be connected through I/O modules and all those components are connected

through this particular system bus. So, we are having these idea till now. So, in first module

we have just have a very top level view of our computer. Now in subsequent module so we are

going to discuss about the design of those particular processor. So, we are having modules to

discuss about the design issues of this particular processor or CPU.

So, we are going to discuss in details in subsequent module how we are going to design a

processor how we are going to design an Instruction for that particular processor how we are

going to interpret those particular Instructions. So, all Organizational and architectural issues

will be discussed with respect to the designing of this particular processor. We will have one

module where we are going to discuss about the Memory module or Memory unit.

What are the components that we are having because here we have seen the top level only we

have the data bus and we have the address bus, with the help of this thing we can fetch

information from Memory and store information in Memory. So, what are the basic principle

to design this particular Memory how we are going to construct the Memory we are going to

design all those in this is another module on Memory model. We will have one module where

we are going to discuss all the design issues of the I/O module ok. So, we will get another

module and in this particular case whatever we are going to discuss over here we are going to

discuss the basic things on the this is unique processor system we are having one processor and

we are going to work with this particular processor only we are going to execute in this

214

particular processor, but to enhancement of the performance we are having some advanced

topics also advance feature also.

Whether something can be done in parallel or not whether it can be done in stages or not. So,

some of the advanced features to enhance the performance of the computer will be discussed

in one module here we can we will discuss only in the information purpose only in the

knowledge level only.

(Refer Slide Time: 68:12)

So when we are discussing about this particular module we have defined some objective in the

module level also because in every unit we have define unit level objective and we have seen

that after going through that particular unit we have achieved those particular objective.

Now, we have completed the complete module of fundamentals of digital computer let’s see

whether we could achieve those particular objective that we have already mentioned for this

particular module. So, the objective first objective we have mentioned like that describe the

model of computer and working principle of computer and we have defined it in the analysis

level. I think we are now having some idea what is the model of computer and how it works.

So, I think we have achieved this particular objective. The objective type 2 we have defined it

like that preliminaries of digital building blocks. So, it is in the logic level. So, what will happen

in that particular case we are just giving the ideas of those particular building blocks and we

are going to use those things?

So, objective 3 describe the representation of information and number system. So, in this

particular objective I think we have made that particular objective also because now we are

having some idea about the number system and how to represents those number in computer

215

real numbers and integer along with that how to represent the other information also. Objective

4 explain the components of processor. So, it is in the comprehension level.

Now, at least now we are having an idea what are the components that we are having in

processor and how it works. Objective 5 describe the interfacing mechanism of storage and I/O

devices this is also in comprehension level. So, here now we are having that we have to connect

I/O devices we have to connect storage and I have to take information from those things.

So, in comprehension level we are having some idea, but in subsequent module we are having

to discuss all those issues in the design level like for the processor also in subsequent level we

are going to discuss all those things in our design level and objective 6 explain the execution

of program in a processor and categorise the computer programming language? This is in the

application level or I can say that up to some extent we are going we have gone up to the

analysis level also.

So, now we are pleased if we get a program we will be able to analyse that particular program

and. Secondly, if we know the Instruction set of a processor I think you will be able to write a

assembly code for that particular processor. So, it is in application and analysis level we have

achieved and in this particular course we are not going to discuss anything about this particular

objective.

In 6 we are not going to discuss anything about the programming languages like that all those

things will be discussed in some other courses maybe that compiler is another course where we

are going to discuss about the design of compiler. So, in this particular course we are not going

to discuss anything about those particular programming languages and execution of the

program. Now when we are completing this particular module now just look into some

problems in the module level.

Now, what will happen in unit level problem you must know the concept of the particular unit

then you will be able to solve the particular problem, but when I come to the module level

216

